
Linear Algebra Working Group :: Day 1

Note: All vector spaces will be finite-dimensional vector spaces over the field R.

1 Projections and the Gram-Schmidt Process

We begin with a review on projections, orthogonality, and the Gram-Scmidt process for finding
orthogonal bases.

Definition 1.1. Let V be a finite dimensional vector space with decomposition V = U ⊕W .
The projection of V onto U along W is the linear map PU,W : V → U that assigns to each
v ∈ V the unique element u ∈ U such that v − u ∈ W .

Exercise 1. Let U be a subspace of a finite dimensional vector space V . Show that a surjective
linear map P : V → U is a projection map if and only if P is idempotent (i.e. P 2 = P ).

Definition 1.2. A finite dimensional inner product space is a pair (V, 〈·, ·〉) consisting of
a finite dimensional vector space V and an inner product 〈·, ·〉 on V .

Exercise 2. Show that every finite dimensional vector space has an inner product (Use that the
category of finite dimensional vector spaces over R with linear maps is equivalent to the category
of Euclidean spaces Rn with linear maps).

Definition 1.3. Let (V, 〈·, ·〉) be finite dimensional inner product space and let U ⊆ V be a
subspace of V . The orthogonal complement of U in V is the subspace U⊥ ⊆ V defined by:

U⊥ := {v ∈ V | 〈v, ·〉|U ≡ 0}

Exercise 3. Let (V, 〈·, ·〉) be a finite dimensional inner product space and let U and W be
subspaces of V . Show that:

1. (U +W )⊥ = U⊥ ∩W⊥

2. (U ∩W )⊥ = U⊥ +W⊥

Exercise 4. Let (V, 〈·, ·〉) and (W, 〈·, ·〉) be finite dimensional inner product spaces and let
A : V → W be a linear transformation. Show that:

1. im(AT )⊥ = ker(A)

2. im(A)⊥ = ker(AT )

Definition 1.4. Let (V, 〈·, ·〉) be a finite dimensional inner product space and let U be a subspace
of V . The orthogonal projection of V onto U is the projection PU : V → U of V onto U along
the orthogonal complement U⊥ in the sense of Definition 1.1.

Exercise 5. Let U be a subspace of a finite dimensional inner product space (V, 〈·, ·〉) and let
U⊥ be its orthogonal complement.

1. Find a formula for the orthogonal projection of V onto U with respect to an orthogonal
basis of U .
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2. Show that V = U ⊕ U⊥

Definition 1.5. Let (V, 〈·, ·〉) be a finite dimensional inner product space and let U be a subspace
of V . Given a vector v ∈ V , the best approximation to v by vectors in U is a vector that
attains the minimum of the function:

f : U → R, f(u) = ||v − u||2

where || · || is the norm on the vector space V induced by the inner product 〈·, ·〉.

Exercise 6. Let (V, 〈·, ·〉) be a finite dimensional inner product space and let U be a subspace
of V . Show that the best approximation of a vector v ∈ V by vectors in U is the orthogonal
projection PU(v) of the vector v onto the subspace U .

Exercise 7. Let A be an m × n matrix with real entries and b ∈ Rm a vector. Show that
Ax = b has a solution if and only if b ∈ ker(AT )⊥. (Hint: The equalities im(AT ) = ker(A)⊥ and
im(A) = ker(AT )⊥ may be useful).

Theorem 1.6. (Gram-Schmidt Process.) Let (V, 〈·, ·〉) be a finite dimensional inner product
space and let {x1, ...xn} be a basis of V . Define a set {v1, ..., vn} of vectors in V as follows:

1. Let v1 := x1.

2. For each integer k such that 1 < k ≤ n, let Vk := span{v1, ..., vk−1}.

3. For each integer k such that 1 < k ≤ n, define vk := xk − PVk
(xk), where PVk

: V → Vk is
the orthogonal projection of V onto Vk.

The set {v1, ..., vk} is an orthogonal basis of V .

Exercise 8. Prove that the Gram-Schmidt Process works.

Exercise 9. Consider the basis {(1, 1, 0), (0, 1, 0), (1, 1, 1)} of R3. Use the Gram-Schmidt process
to obtain an orthonormal basis of R3 starting from this one.

Exercise 10. Use the Gram-Schmidt Process to find an orthogonal basis of the image of the
matrices:

1.


3 −5 1
1 1 1
−1 5 −2
3 −7 8



2.


−10 13 7 −11

2 1 −5 3
−6 3 13 −3
16 −16 −2 5
2 1 −5 −7


Exercise 11. For any integer k ≥ 0, let R[k] be the space of polynomials of degree at most k
with real coefficients. Fix integers 1 ≤ k ≤ n.
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1. Fix distinct numbers x0, x1, ..., xn, where k is an integer such that 1 ≤ k ≤ n, and define
the following bilinear function on R[k]× R[k]:

〈p, q〉 := p(x0)q(x0) + p(x1)q(x1) + ...+ p(xn)q(xn)

Show that this is an inner product.

2. Let R[4] be space of polynomials of degree at most 4 with real coefficients. Consider the
inner product on this space given by the formula in part (1) for the numbers −2,−1, 0, 1, 2.
View the space of polynomials R[2] of degree at most 2 with real coefficients as a subspace of
the space R[4]. Use this inner product and the Gram-Schmidt process to find an orthogonal
basis of the subspace R[2] starting from the basis {1, t, t2}.

2 The QR Factorization

Exercise 12. Let A be an m × n matrix. Suppose A = QR where Q and R are matrices of
dimensions m× n and n× n respectively.

1. Suppose A has linearly independent columns. Show R is invertible. (Hint: Consider the
subspace kerR of Rn.)

2. Suppose R is invertible. Show that im(A) = im(Q).

Definition 2.1. Given an m×n matrix A, a QR factorization of the matrix A is a factorization
of the form A = QR, where Q is an m× n matrix whose columns form an orthonormal basis of
im(A) and R is an n× n upper triangular matrix with positive entries on its diagonal.

Theorem 2.2. If A is an m × n matrix with linearly independent columns, then A has a QR
factorization.

Exercise 13. (QR Factorization via the Gram-Schmidt Process.) Let A be an m × n
matrix A that has linearly independent columns. Prove Theorem 2.2 by constructing a QR
factorization of A using the Gram-Schmidt Process.

Exercise 14. Compute the QR factorization of the following matrices using the Gram-Schmidt
Process:

1.


5 9
1 7
−3 −5
1 5



2.


1 0 0
1 1 0
1 1 1
1 1 1


Definition 2.3. Let A be an m × n matrix with linearly independent columns. If m ≥ n, the
full QR factorization of the matrix A is a factorization of the form:

A = Q

(
R
0

)
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where Q is an m×m orthogonal matrix and R is an n× n invertible matrix. If m ≤ n, the full
QR factorization takes the form:

A = Q
(
R 0

)
Exercise 15. Given an m×n matrix A, show how to obtain a QR factorization from a full QR
factorization. Show how to obtain a full QR factorization from a QR factorization.

Definition 2.4. A Householder matrix or elementary reflector is a matrix of the form:

H = Id− 2uuT

where u is a unit vector (viewed as a column vector).

Exercise 16. Let H be a Householder matrix. Prove the following properties of Householder
matrices:

1. Prove that H2 = Id.

2. Prove that H is an orthogonal matrix.

3. Prove that if H is an n × n matrix, then H has eigenvalues 1 and −1 with multiplicities
n− 1 and 1 respectively. (Hint: What does H = Id− uuT do to vectors orthogonal to the
vector u? How many such vectors are there?)

4. Prove the determinant of H is −1.

5. Prove that H = Id−uuT corresponds to reflection about the hyperplane in Rn defined by
the unit vector u. One way to check this is to show that the linear transformation x 7→ Hx
satisfies that the orthogonal projection of x and Hx onto the hyperplane defined by u is
the same.

6. Provide examples in 2 and 3 dimensions of Householder matrices that illustrate the reflec-
tion nicely.

Exercise 17. Let A be an m×n matrix and let a be the first column of A. Let v be the vector:

v := a− ||a||e1

where e1 is the first standard basis vector of Rm, and let u be the corresponding unit vector
u := v/||v||. Define the Householder matrix H := Id− 2uuT. Then:

1. Compute Ha. What can you say about the product HA?

2. Interpret H geometrically in terms of the subspaces span(a) and span(e1)

Exercise 18. (QR Factorization via Hausholder transformations.) Let A be an m × n
matrix with linearly independent columns. Consider the following algorithm:

1. For step 1, let a1 be the first column of A and form the Householder matrix described in
the previous exercise with a = a1. Call it H ′1 and set H1 := H ′1. Form the product H1A.
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2. For the kth step, let Ak be the matrix obtained by deleting the first k rows and columns of
the matrix:

Hk−1Hk−2 · · ·H1A

Form the Householder matrix as in step 1, but for the matrix Ak. Call it H ′k and define:

Hk :=

(
Idk−1 0

0 H ′k

)
Now form the product H2H1A.

3. Repeat the process for N := min{m− 1, n} steps and then form the matrix:

R̃ := HNHN−1 · · ·H1A

Now do the following:

1. Show how to obtain a QR decomposition starting from the matrix R̃. (Hint: This matrix
gives the right hand side matrix of the full QR decomposition).

2. Geometrically describe the difference between the algorithms producing the QR decompo-
sition based on the Gram-Schmidt process and the Householder reflections.

Exercise 19. Compute the QR factorization of the following matrix using Hausholder transfor-
mations:  12 −51 4

6 167 −68
−4 24 −41


Exercise 20. Compute the QR factorization of the matrices in exercise 14.

Exercise 21. Let A be an m × n matrix with linearly independent columns and let A = QR
be a corresponding QR factorization. Let p be an integer such that 1 ≤ p ≤ n. Partition A into
the form:

A = (A1A2)

where A1 is an m× p matrix and A2 is an m× (n− p) matrix. Give an algorithm for obtaining
a QR factorization of A1.

3 Least-Squares

It’s very common for linear systems that show up in applications to not have a solution. One
can still ask for the closest “approximate solution”.

Definition 3.1. Let A be an m × n matrix and b ∈ Rm an m-dimensional vector. A least-
squares solution of the system Ax = b is a vector xm attaining the minimum of the function:

f : Rn → R, f(x) := ||b− Ax||2

The quantity f(xm) = ||b − Axm|| is known as the least-squares error of the least-squares
solution xm. We’ll denote the set of least-squares solutions by LS(A, b).
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Definition 3.2. Let A be an m × n matrix and let b ∈ Rm, the normal equation associated
to the system Ax = b is the system ATAx = AT b.

Exercise 22. Let A be an m×n matrix and let b ∈ Rm. Let LS(A, b) be the set of least-squares
solutions. Show that:

LS(A, b) =
{
x ∈ Rn | ATAx = AT b

}
Explain geometrically the relationship between least-squares solutions and orthogonal projec-
tions.

Exercise 23. Compute a least-squares solution of the following Ax = b system:

A =


1 −2
−1 2
0 3
2 5

 b =


3
1
−4
2


Exercise 24. Describe the least squares solutions of the following Ax = b systems:

1. A =


1 1 0
1 1 0
1 0 1
1 0 1

 b =


1
3
8
2



2. A =

 1 3
1 −1
1 1

 b =

 5
1
0


Exercise 25. Let A be an m× n matrix. Show that:

1. kerA = kerATA. (Hint: For the inclusion ⊇ consider the vector xTATAx for arbitrary
x ∈ ker(ATA).)

2. Show rankATA = rankA.

3. If ATA is invertible, then A has linearly independent columns.

Theorem 3.3. (Conditions for Uniqueness of Least-Squares Solutions.) Let A be an
m× n matrix and b ∈ Rm. The following are all equivalent:

1. There is only one least-squares solution, i.e. the set of least-squares solutions LS(A) is a
singleton.

2. The columns of A are invertible.

3. The matrix ATA is invertible.

Exercise 26. Prove Theorem 3.3. (Hint: For one of the implications it may be useful to show
that kerA = kerATA.)

Exercise 27. Let A be an m× n matrix with linearly independent columns and let b ∈ Rm be
a vector. Use a QR factorization of A to find the least-squares solutions to the system Ax = b.
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Exercise 28. Suppose there is a unique solution to a least-squares problem Ax = b. Let c ∈ R be
a nonzero scalar. What is the set of least-squares solutions LS(A, cb) in terms of the least-squares
solution of Ax = b?

Exercise 29. (Rayleigh Quotients) Let A be an n× n matrix. Suppose v ∈ Rn is an approx-
imate eigenvalue. That is, suppose the system:

Av = λv

does not have a solution λ ∈ R, but “almost” has one. Rephrase the system so that you can
use the least-squares method to best-approximate the eigenvalue λ. This estimate is called a
Rayleigh quotient.

4 Linear Models: Regression

Definition 4.1. A general linear model for a relationship between y ∈ R and x ∈ Rm is an
equation of the form:

y = β0 + β1f1(x) + β2f2(x) + ...+ βkfk(x) (4.1)

Given a data set {(xi, yi)}i=1,...,n consisting of observations of the variables x ∈ Rm and y ∈ R,
an approach to model the underlying phenomenon is to suppose the variables x and y satisfy

a general linear model as in Definition 4.1. One then tries to find parameters β̂ =
(
β̂0, ..., β̂k

)
such that the variables satisfy the corresponding linear model up to some small error. That is
one could try to solve the system:


1 f1(x1) f2(x1) ... fk(x1)
1 f1(x2) f2(x2) ... fk(x2)
...

...
...

...
...

1 f1(xn) f2(xn) ... fk(xn)




β0
β1
β2
...
βk

 =


y1
y2
...
yn

 (4.2)

The matrix in equation (4.2) is usually denoted by X and is called the design matrix, the
vector β = (β0, ..., βk) is called the parameter vector, and the vector y = (y1, ..., yn) is called
the vector of observations. Thus, the system (4.2) becomes Xβ = y.

Note that in most cases an exact solution to (4.2) doesn’t exist. In such a case, one seeks
the best approximation, and this is often done via least-squares optimization. The error in this
context is often called the residual vector and denoted by ε.

Exercise 30. (Lines of regression.) The most basic example of (4.2) comes from lines of
regression or least-squares lines. Suppose you are given data {(xi, yi)}i=1,...,n where xi ∈ R
and yi ∈ R. Model this data via the following linear model:

y = β0 + β1x

1. Give the design matrix for this model.

2. Let β̂ =
(
β̂0, β̂1

)
be the least-squares solutions of the resulting system. Geometrically

interpret the solution and its relationship to the data points {(xi, yi)}.
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3. Geometrically interpret the residual vector ε.

4. Do you think this method is appropriate for all data? Justify if yes. If not, provide an
example of data for which it isn’t.

Exercise 31. Find the least-squares line that best fits the data: (2, 3), (3, 2), (5, 1), and (6, 0).

Exercise 32. Given a data set {(xi, yi)}i=1,...,n, show that there is a unique least-squares line if
the data contain at least two data points with distinct x values.

Exercise 33. Given a data set {(xi, yi)}i=1,...,n, let x be the mean of the x-values. Define the
variable x∗ := x − x and consider the data set {(x∗i , yi)}i=1,...,n. This data set is said to be in
mean-deviation form.

1. Show that the corresponding design matrix is an orthogonal matrix.

2. How does this affect solving the normal equation for the corresponding least-squares prob-
lem?

Exercise 34. Given a data set {(xi, yi)}i=1,...,n. The data points are not always equally reliable
(e.g. they might be drawn from populations with probability distributions with different vari-
ances). It might thus be prudent to give each data point a different weight. More precisely, one
can define the inner product on Rn:

〈u, v〉 := w2
1u1v1 + w2

2u2v2 + ...+ w2
nunvn

and perform the linear regression with respect to this inner product.

1. Give the normal equation for the least-squares problem with respect to this inner-product
(Hint: Form a matrix with the weights).

2. Give the corresponding least-square error. This is often called the weighted sum of
squares for error.

Exercise 35. Given a data set {(xi, yi)}i=1,...,n it is very common for the data to not have a linear
trend. In such a case a linear relationship between the x and y may not be the best guess for the
functional relationship y = f(x). One could instead guess, for example, a quadratic relationship:

y = β0 + β1x+ β2x
2

Note: We are still working with the general linear model from Definition 4.1. The “linearity”
of the general linear model is linearity in the parameters βj not the relationship between the
variables x and y.

1. Give the design matrix for the above quadratic relationship y = f(x).

2. Give the design matrix for a cubic relationship y = f(x).

3. Give the design matrix for a general polynomial relationship y = f(x) of degree k.

Exercise 36. Consider the data (1, 1.8), (2, 2.7), (3, 3.4), (4, 3.8), (5, 3.9).

1. Plot the data.
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2. Use an appropriate general linear model to fit the data.

Exercise 37. (This is a really nice short problem found in Lay’s book [L94] based on Gauss’
original work on regression and the prediction of the orbit of the asteroid Ceres.) Ignoring the
gravitational attraction of the planets, Kepler’s first law predicts a comet should have an elliptic,
parabolic, or hyperbolic orbit. In suitable polar coordinates (r, θ) the comet should obey:

r = β + e(r cos θ)

where β is some constant and e is the eccentricity of the orbit. Suppose you have the observations
(3, .88), (2.3, 1.1), (1.65, 1.42), (1.25, 1.77), (1.01, 2.14).

1. Use a least-squares approach to determine the parameters β and e.

2. Determine the type of orbit from the parameter e. If 0 ≤ e < 1, the orbit is an ellipse, if
e = 1 it is a parabola, and if e > 1 it is a hyperbola.

3. Predict the position r when θ = 4.6.

Exercise 38. Let {(ti, yi)}i=1,...,n be a set of data where t is time and the data exhibits seasonal
fluctuations. Posit a model for this data and give its design matrix.

Exercise 39. Suppose you are given a data set {(ui, vi, yi)}i=1,...,n and you posit there is a
relationship y = f(u, v).

1. Suppose the relationship is given by a plane. Give a general linear model for this dependence
and the corresponding design matrix. This generalizes lines of regression to planes of
regression.

2. Suppose there is periodic dependence on the u variable, quadratic dependence on the v
variable, and linear dependence on the product uv. Give a general linear model for this
relationship and the corresponding design matrix.

Exercise 40. (Interpolating polynomials.) Let x1, ..., xn be numbers. A Vandermonde
matrix is the design matrix for the general linear model given by:

fj(x) = xj j = 0, ..., n− 1

1. Write down the general form of the Vandermonde matrix.

2. Let V be the Vandermonde matrix for the numbers x1, ..., xn and let y ∈ im(V ). Let
c = (c0, ...., cn−1) be such that V c = y and define the polynomial:

p(x) := c0 + c1x+ c2x
2 + ...+ cn−1x

n−1

Show that the graph of p contains the points {(xi, yi)}i=1,...,n. That is, the polynomial p
interpolates the data.

3. Show that if the numbers xi, i = 1, ..., n, are distinct then the rank of the matrix V
is n. (Hint: Show the columns are linearly independent by considering the roots of the
polynomial p.)
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4. Show that if the data set {(xi, yi)}i=1,...,n is such that the xi are distinct then one can always
find an interpolating polynomial of degree n− 1.

Exercise 41. Find a polynomial interpolating (−2, 3), (−1, 5), (0, 5), (1, 4), and (2, 3).

Exercise 42. (Trend analysis.) It is not always clear what is the trend of some given data
{(xi, yi) ∈ R2}i=1,...,n. One way is to use the data points to perform trend analysis.

1. Compute an orthogonal basis {p0, p1, p2} of R[2] with respect to the inner product:

〈p, q〉 := p(x0)q(x0) + p(x1)q(x1) + ...+ p(xn)q(xn)

by performing the Gram-Schmidt Process starting from the basis {1, t, t2}.

2. Let {p0, p1, p2} be an orthogonal basis of R[2] with respect to the inner product:

〈p, q〉 := p(x0)q(x0) + p(x1)q(x1) + ...+ p(xn)q(xn)

Let f be a polynomial in R[n] such that f(xi) = yi for i = 1, ..., n (see Exercise 40). Let
P : R[n] → R[2] be the orthogonal projection with respect to the inner product on R[n].
The projection of the interpolating polynomial f gives a quadratic trend function fitted
to the data:

P (f) = c0p0 + c1p1 + c2p2

Show that knowledge of the polynomial f is not needed to obtain the projection P (f), it
suffices to know the values yi.

3. Consider the data points (−2, 3), (−1, 5), (0, 5), (1, 4), and (2, 3).

(a) Fit a linear trend function to the data.

(b) Fit a quadratic trend function to the data.
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