Metastable States of the Ising Model on the Two-Holed Torus

Alexi Block Gorman Stefan Klajbor Goderich Alyssa Loving

University of Illinois, Urbana-Champaign

July 29, 2016
Outline

- Introduction
- Computational Results
- Theoretical Results
The L-shape

L-shaped grid as an identification space for the two-holed torus:
Squares of “hyperbolic type” – 16 neighbors, not 8
New definition of energy function – normalize!
Let \(v \) be a square on our L-shape.

\[
E(v) := -\frac{\sigma(v)}{N(v)} \sum_{w \in B(v), \ w \neq v} \sigma(w)
\]
What did we observe?

We saw some of these:
What did we observe?

And also some of these:
What did we observe?

And, surprisingly frequently, these:
Some more interesting configurations

Figure: Band configuration after 7,000,000 iterations.

Parameters:
- $m_1 = 60$
- $m_2 = 40$
- $n_1 = 60$
- $n_2 = 40$
- $\beta = 1.5$
(1 0 1 0)

(1 0 1 0)
Some Statistical results

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short bands</td>
<td>.413</td>
</tr>
<tr>
<td>Long bands</td>
<td>.064</td>
</tr>
<tr>
<td>Definitely diagonal bands</td>
<td>.062</td>
</tr>
<tr>
<td>Bands of type (0,1,0,1) or (1,0,1,0)</td>
<td>.148</td>
</tr>
<tr>
<td>Stable states</td>
<td>.250</td>
</tr>
<tr>
<td>Unclassified (1 1 1 1)</td>
<td>.003</td>
</tr>
</tbody>
</table>

This still leaves .040 bands (4% of them) unaccounted for because they have a ’2’ somewhere in the tuple
Theoretical Results
Local minima of the energy

Recall the total energy of a configuration:

\[E(\tau) = - \sum_{v \in \mathcal{L}} \frac{\tau(v)}{N(v)} \sum_{w \in B(v) \setminus \{v_0\}} \tau(w) \]

- A **metastable** state is a spin configuration that persists for a long time.
- Such metastable states are local minima of the energy functional above with deep energy wells.
What is a local minimum of the energy?

Two spin configurations $\tau : \mathcal{L} \to \{\pm 1\}$ and $\sigma : \mathcal{L} \to \{\pm 1\}$ are said to be **nearby configurations** if τ and σ only differ at one square.

A spin configuration τ is a **local minimum** if τ has a lower energy than all nearby configurations. Thus:

- Look at difference in energy:
 \[\delta E(\tau, \sigma) := E(\tau) - E(\sigma) \]

- If \forall nearby σ we have $\delta E(\tau, \sigma) < 0$, then τ is a local minimum.
Are our observed metastable states local minima?
How to verify a local minima

Use the following expression for $\delta E(\tau, \sigma)$:

$$\delta E(\tau, \sigma) = 2\sigma(v_0) \sum_{\substack{v \in B(v_0) \\ v \neq v_0}} \sigma(v) \left(\frac{1}{N(v_0)} + \frac{1}{N(v)} \right)$$

$$= \frac{1}{8} \sigma(v_0) \left((2H^+ + 3R^+) - (2H^- + 3R^-) \right)$$

where we’ve divided $B(v_0)$:

$$H^+ = \text{1’s of hyperbolic type} \quad R^+ = \text{1’s of regular type}$$

$$H^- = \text{-1’s of hyperbolic type} \quad R^- = \text{-1’s of regular type}$$
Example computation of δE

Here $H^+ = H^- = 0$, $R^+ = 3$, and $R^- = 5$, so:

$$\delta E(\tau, \sigma) = \frac{1}{8} \sigma(v_0) \left((2H^+ + 3R^+) - (2H^- + 3R^-) \right)$$

$$= \frac{1}{8} (1)(-6)$$

$$< 0$$

Hence, $\delta E(\tau, \sigma) < 0$ so $E(\tau) < E(\sigma)$.
Example computation of δE

One then looks at cases:
There’s a spin symmetry to the rescue

There’s a $\mathbb{Z}_2 = \{\pm 1\}$ action by multiplication on the set of configurations Ω, where the action of -1 exchanges spins, i.e.

$(-1) \cdot \tau(v) = -\tau(v)$

The energetic difference for nearby configurations δE is invariant with respect to this symmetry:

$$\delta E \left((-1) \cdot \tau, (-1) \cdot \sigma \right)$$

$$= 2 \left((-1) \cdot \sigma \right)(v_0) \sum_{\begin{subarray}{c} v \in B(v_0) \\ v \neq v_0 \end{subarray}} \left((-1) \cdot \sigma \right)(v) \left(\frac{1}{N(v_0)} + \frac{1}{N(v)} \right)$$

$$= \delta E(\tau, \sigma)$$

This doubles our yield of local minima!
Our observations are local minima!

Lemma (Observed metastable states are local minima)

For a fine enough lattice graph \mathcal{L}, the following spin configurations are local minima of the total energy functional:

- **Thick enough straight bands** that are far enough from the hyperbolic point (a distance of 2 will do)
- **Thick enough diagonal bands** that are far enough from the hyperbolic point (a distance of 2 will do)
- Connected double bands
- One legged pants
- The set of squares of hyperbolic type
Some remarks and surprises

Why avoid the hyperbolic point in the first two examples? There’s a curious surprise that yields the answer...

It has a higher energy than the nearby configuration pictured!

\[
\delta E(\tau, \sigma) = \frac{1}{8} \sigma(v_0) \left((2H^+ + 3R^+) - (2H^- + 3R^-) \right) = \frac{1}{8}(-1)(-9) > 0
\]
The problem is the band doesn’t have enough of the hyperbolic points (or too many depending on your point of view), which are a local minimum themselves!

The hyperbolic points are a local minimum and a strong one, as it displaces bands! This is part of the unique behavior of the Ising model on the genus 2 Torus.
The surprise demystified

Going back, we see that in our examples, the hyperbolic points are all one color:
Concluding remarks and Future Work

On the theoretical side:

- Explain the probability distribution of the observed homology types
- Estimate the probability of observing the metastable states by using large deviations
- Explain why straight and diagonal edges arise by using entropy pressure

On the computational side:

- One can vary the dimension parameters in our model and see its effect on the kinds of metastable states
- Implement other ways to study the frequency of the metastable states
References:

We would like to acknowledge support from National Science Foundation grant DMS 1345032 “MCTP: PI4: Program for Interdisciplinary and Industrial Internships at Illinois” and also thank Professors Rick Laugesen and Yuliy Baryshnikov for organizing this program, Professor Maxim Arnold for his guidance and patience, and our fellow participants for their ideas and interest along the way.