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The development of complex patterns over time from seemingly homogenous initial con-
ditions has long been a topic of interest in biology. In his seminal 1952 paper, Alan Turing
found that instability in reaction diffusion equations can give rise to pattern formation. With
slight variations, reaction diffusion equations have successfully reproduced patterns such as
leopard spots or cheetah stripes similar to those found in nature [1]. While the complete
mechanism behind digit patterning in tetrapod limbs is unknown, reaction diffusion sys-
tems have been able to reproduce many key features of digit patterning [2], such as the
observed proximodistal progression from one bone (humerus) to two bones (radius/ulna) to
five digits. Because computer simulations of limb development run much faster than their
in vitro counterparts, developing a limb model in silico provides an efficient preliminary way
to explore the developing limb which helps determine which experiments will be fruitful in
vitro. This summer, we were able to use an existing model of limb development with mod-
ified parameters to reproduce the standard 1-2-5 (humerus-radius/ulna-fingers) progression
of bones in mammalian limbs. This model can now be used to test the importance of apical
ectodermal ridge (AER) shape in determining the number of digits produced, as well as
removal experiments in which the AER is removed from the limb bud before development is
complete.

We followed in the footsteps of [2] and attempted to simulate the development of a sim-
plified system obtained via adiabatic elimination of the variables representing fibronectin
density and the differentiated cell types which produce TGF-β. We attempted to com-
pute the solution to this simplified system on a moving rectangular domain; however, upon
performing a linear stability analysis for the system, we determined that the system and
parameters provided in [2] would not lead to the desired patterning. Thus we decided to
model the system

∂ca/∂t = Da∆ca + U(ca) − kacaci

∂ci/∂t = Di∆ci + V (ca) − kacaci
(1)

in [3], where ca is the concentration of the activator morphogen (TGF-β) and ci is the
concentration of the inhibitor, fibroblast growth factor (FGF). The terms Da∆aca (resp.
Di∆ici) represent the diffusion of the activator (resp. inhibitor) throughout the limb. The
functions U (resp. V ) control the production rates of ca (resp ci), and kacaci represents the
reaction rate of the activator and inhibitor. The functions U and V depend crucially on a
reaction kinetic parameter γ related to feedback strength of the activator morphogen. This
system of equations is obtained from the full system of 8 equations in [2] by assuming that cell
identity is established before cellular rearrangement (the morphostatic mechanism), rather
than simultaneously (the morphodynamic mechanism). Whereas Zhu et. al. use a finite
element method to compute the solutions to the system on moving domains with complex
shapes, we used a 4th order Runge-Kutta finite difference method on a moving rectangular
domain with a parabolic right-hand boundary. The moving domain was achieved by defining
a movable active zone of specified length in which we computed solutions to system (1). Once
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a grid point was no longer part of the active zone, it became a member of a “frozen zone”
in which the computed values of the function remained constant throughout the rest of
the simulation. Many of the biological parameters in the system have presumably been
chosen particularly over time by evolution. Where these parameters were not known, it was
necessary to work backwards until a suitable set of parameters was found that produced the
desired limb configuration.

Figure 1: Simulation of system (1) on a moving rectangular domain with parabolic right-hand boundary
representing the portion of the limb bud equidistant from the dorsal and ventral surfaces

Another fascinating aspect of limb development is its robustness with regard to deletions
or mutations in some of the genes which express morphogens crucial for pattern formation.
This is due in part to genetic redundancy from gene duplication and the ability of heat shock
protein 90 (Hsp90) to correctly fold large proteins even if amino acid substitutions have
occurred. However, there is also robustness built into the mechanism of limb development
itself, such that if one signalling pathway is prematurely interrupted, the limb still develops
normally. Therefore, if a reaction diffusion model is to truly reproduce limb development, it
must be subject to the same robustness. To this end, we carried out a sensitivity analysis
to determine how simultaneously changing the domain width and γ affected the number of
digits produced by our code. These two parameters in particular were chosen because after
some experimentation, we determined that they have the greatest impact on the number
of digits produced. While it would be desirable to perform a linear stability analysis, the
parabolic shape of the right side of our domain makes solutions to the linearized form of
system (1) difficult to compute. As a curved right-hand boundary was crucial for pattern
formation, it was not reasonable to approximate our domain by a rectangle for linear stability
analysis.

As expected, increasing the width of the domain increased the number of digits produced,
as did increasing γ. It was found that bifurcations (with respect to digit number) could be
achieved with changes on the order of 1 in the width of the domain, and changes on the order
of 1000 in γ. Furthermore, as γ increases, the system appears to become more sensitive to
changes in the width of the domain.

The next step in the process is to compare the observed sensitivity to domain width
with findings in vitro and determine if the reaction kinetic parameters chosen align well with
real biological time scales. The primary obstacle to progress in computer simulations is the

2



Daniel Carmody PI4 Final Report-Summer 2014

limitation of current computational power. Even with efficient finite element algorithms to
handle complicated moving domains, simulations are still done in 2 spatial dimensions [3].
It may be worthwhile to focus on certain geometric or topological invariants of the solution
space to a system in 3 dimensions (if these can be determined without explicitly computing
the solutions). For example, given a limb, one could imagine that the number of bones in the
limb could be computed by determining the homology of the complement of the bones in the
limb. Hence it may be faster to determine the homology of the complement of the set of values
of the solution to a system above a certain threshold in a given domain. Finally, continued
biological experiments which help determine the relative importance of certain morphogens
will also help refine approximations to the true mechanism so that improvements can be
made without a significant increase in computational time.
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